

Double Poured Indefinite ChillSolid Rolls

What are DPICSolid Rolls?

The Spun cast double poured indefinite chill solid rolls have a highly alloyed centrifugal shell as a working layer while the core is soft grey iron. The shell microstructure is high in hardness due to a mixture of carbides and graphite.

Composition of the Shell (working layer)

_ composition or the control (are the grant of the grant				
Carbon	Nickel	Chrome	Manganese	Moly
3.4 - 3.9	0.7 – 1 %	2 - 2.5 %	0.6 max	0.2% max
3.4 - 3.9	1.7 - 2%	1.5 - 2%	0.6 max	0.2% max

Properties

- A uniform shell thickness with high shore hardness
- Vibration damping capabilities to provide a good surface finish
- Good thermal conductivity to reduce fire cracking during use

Hardness: 70 – 75HS

Applications: generally used in the last two to three stands (F4, F5 and F6 Stands) in the Finishing Stands of Hot Strip Mills as well as in Roughing & Finishing Stands of Four High Plate Mills and Finishing Stands of Rod & Narrow Strip Mills

OUR PRODUCTS

- DPIC Rolls
- ICCI Rolls
- SG Iron Rolls
- Adamite Rolls
- Forged Iron Rolls
- Barrel Shafted Rolls

OTHER PRODUCTS

- Pinion gears
- Gear couplings
- Universal couplings
- Spindle
- Fly wheel
- Bearing chokes
- Pulley
- Other millaccessories

OUR EDGE

- 50 + Year of service
- CNC machining
- High Quality product
- Consultancy services

Send in an enquiry for the quotes & metallic composition for our products or to receive the product Catalogue.